
Exam III: MTH 213, Spring 2018

Ayman Badawi

$$Score = \frac{37}{37}$$

QUESTION 2. $A = \{2, 3, 4, 5, 6, 30, 60\}$. Define \leq on A such that $\forall a, b \in A$, $a \leq b$ if and only if a = bc for some $c \in N^*$. Then (A, \leq) is a partially ordered set (DO NO SHOW THAT)

(i) (4 points) Draw the Hassee diagram of such relation

- (ii) (3 points) By staring at the Hassee diagram, If possible, find
 - a. 5 1 6 30 1
 - b. 614 60 V
 - c. 6 v 3 3
 - d. 30 v 60 3 🔾

 - f. Is there an $m \in A$ such that $m \le a$ for every $a \in A$? If yes, find $m \in A$

QUESTIC	N 3. (10 points)	
(i) Let H	be a set with 7 elements, and let $H = \{d \in F \mid d = 4\}$. Find $ H $ (i.e., find the cardinality of H)	
	704	
secon	many 5-digit even integers greater that 60000 can be formed using the digits (1, 2, 3, 4, 5, 6, 7) such that the d and the third digit must be odd integer.	
5.00	are 7 dots randomly placed on a circle such that exactly 4 of them are red and the remaining three dots are How many triangles can be formed within the circle (i.e., inside the circle) such that each triangle has exactly een vertices?	hos.
	3C2 × 4C1	
are gr	ds are in a gathering, all of them were born between 2010-2014. It is observed that more than 60% of them ls. Then there exist at least n kids who were born in the same month and in the same year. What is the number of n ? By Process - hole Ponciple is the process of the process of them the same year. What is the process of the process of them there exist at least n kids who were born in the same month and in the same year. What is the process of the process o	
(v) In the month	above question, there is a month and a year between 2010-2014 such that at most m kids were born in that and in that year. Find the minimum value of m .	
1	491/28	
	4. (4 points) 1, 2, 3, 4, 5, 6, 7, 8}. Let f be a bijective function from S onto S such that	
	$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 1 & 5 & 8 & 6 & 4 & 2 & 3 \end{pmatrix}$	
(i) Find f^2	(i.e., find fof). (Note that by staring at f, we understand that $f(1) = 7,, f(8) = 3$)	
b s	(2345678) (27634815)	
	least positive integer n such that $f^n = I$, where I is the identity map (i.e., $I(a) = a$ for every $a \in S$)	
f = (],	7,2) (3,5,6,4,8); inzLCM[3,5]21	5
QUESTION	5. (2 points) Let $M = Q \cap (-1,0)$. Is M countable? Is $ M = Q $? explain briefly. $Q \cap (-1,0)$	e.
There	are in Rinitely many rabbanal numbers betu O Q N (-1,0) is a subset of Q with cardin	2
-land	O Q N (-1,0) is a subset of Q with cardin	Wille
M Roal	of countrable. So Yes Mis countrable, IMIZI	W

QUESTION 6. (3 points) Given $f: [-2, \infty) \to [-4, \infty)$ is a function such that $f(x) = x^3 + \sqrt{x+11} + e^{(x+2)}$. mathematical argument and convince me that $\exists ! m \in [-2, \infty)$ such that f(m) = 0. $f(-2) = (-2)^3 + \sqrt{9} + e^0 = -4 = \lim_{n \to \infty} f(n) = \infty + \infty + \infty = \infty$; $f(3) = \lim_{n \to \infty} f(n) = \infty + \infty + \infty = \infty$; f'(nc) = 32c2 + 1 = enc+2) + ty, f'(nc) is always positive over domoin ... f(nc) is increasing anly ... f(nc) is 1-1. or or who Since fra Bonto, there exist m' indomain s.t. f(m) = 0 beause

OE [-4,00), and since f(ee) is also I-1, this mis unique.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

(2 (2) (2) 1) 12

QUESTION 4. $A = \{4, 6, 7, 8, 10, 20\}$. Define \leq on A such that $\forall a, b \in A, a \leq b$ if and only if $b - a \in \{0, -2, -3, -4, -6, -13, -16\}$. Then (A, \leq) is a partially ordered set (DO NO SHOW THAT) (i) (4 points) Draw the Hassee diagram of such relation 0 4 " (4) . 6"(": 4,(6). : 4, (7) 5": 4,6,(8) "(":4,6,7,8,(10) 20 (ii) (3 points) By staring at the Hassee diagram, if possible, find a. 20 v 10 = 7. b. $7 \wedge 6 = 10$. c. 20 v 8 = d. $20 \lor 4 = 4$ e. Is there a $\underline{c} \in A$ such that $\underline{a} \leq \underline{c}$ for every $a \in A$? If yes, find $c \Rightarrow \forall e \leq \underline{c} \in A$ f. Is there an $m \in A$ such that $m \le a$ for every $a \in A$? If yes, find $m \Rightarrow NO$, DNE QUESTION 5. (3 points) Convince me that $|(-\infty,0]| = |(-5,4]|$ by constructing a bijective function between the two 1821=9ex-5 Let F: (-∞,0] -> (-5,4] $f(z) = 9e^{z} - 5$ from graph, it is clear that f(x) is one-to-one (since function is increasing) and onto (since range = me"-5 = 4 co-domain). Hence f is a bijective function le know from fact that, if a bijective function can be out, the domain & codomain have same cardinality. QUESTION 6. (6 points) ... \(-∞,0] | = \(-5,4] \ my fault (i) Let F be a set with 4 elements, Consider the power set of A, P(A) and let $H = \{d \in F \mid |d| = 3\}$. Find |H| (i.e., find the cardinality of H) where lol = 3. (order in subsets) .. |H| = # of all possible subsets d IF1 = 4 . H is a set containing all subsets of supposatobe ALA) F for which cardinality of subset = 3. 5016C3 (ii) How many 4-digit even integers greater than 5300 can be formed using the digits (2, 3, 4, 5, 6, 7, 8) such that the third digit must be an even integer. 4th = 4C1 (even integer) 1 1 = 4C1 (>5000) 2" = 6(1 (>300) - Total possibilities = (4C1 x 6C1 x 4C1 x 4C1) 3" = 4C1 (even; {2,4,4,1}) (iii) There are 432 balls and there are 9 holes (very deep holes). The holes are labeled 'A, A, A, B, B, B, C, C, C. 123 balls must be placed in A-holes (i.e., maybe all of them in one A-hole, or in two A-holes or in three A-holes), 200 balls must be placed in B-holes (see my earlier comment), and the remaining balls must be placed in C-Holes (again, see my earlier comment). Then there are at least n balls that are placed in the same hole (such hole could be an A-hole, or a B-hole, or a C-hole). What is the maximum value of n? Domain A = 123 . (0-domain A = 3. \Rightarrow least balls in $A = \lceil \frac{123}{3} \rceil = 41$. -: least balls placed | Domain B| = 200 . | (co-domain B| = 3. least balls in 8 = [200] = 67 in same hole of any [Domain C = 432-323 = 109. [(n-domain C = 3. [FE, Fd, IV nim = loni least balls in C = [109] = 37. QUESTION 7. (2 points) Find 824002 (mod 35) -\$(n) (mod a) -Fort: If oxd(a,n)= 1 than

Given $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Let f be a bijective function from S onto S such that

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1 & 8 \end{pmatrix}$$

(i) Find f^2 (i.e., find $f \circ f$). (Note that by staring at f, we understand that f(1) = 7, ..., f(8) = 8) $f^2 = fof = f(f(2))$.

(ii) Find the least positive integer n such that $f^n = I$, where I is the identity map (i.e., I(a) = a for every $a \in S$)

f as disjoint cycle =
$$(17)(26)(354)$$

2-cycle 2-cycle 3-cycle.

QUESTION 9. (3 points) Let $A = \{0,1,2,3,4\}$ and consider the following equivalence classes of an equivalence relation "=" on A: $[0] = \{0,3,4\}$, $[1] = \{1\}$, $[2] = \{2\}$. Note that the definition of "=" is not given here. Write down the elements (explicitly) of "=" as a subset of $A \times A$.

QUESTION 10. (4 points) Let $A = \{1, 2, 4, 7, 8, 11, 13, 14\}$ and let $H = \{1, 4, 7, 13\}$, Define "=" on A such that $\forall a, b \in A, \underline{a}$ " = "b if and only if \underline{ab} ($\underline{mod15}$) $\in H$. Then "=" is an equivalence relation. Do not show that.

(i) Does 3 = 7? why? ⇒ IF 3"="7, this theans (3)(7)(mod 15) ∈ H. (3)(7)(mod 15) = 21(mod 15) = 6 € H.

(ii) Does 11 = 14? why? Henca, (3'≠"∓)

J IF II "=" 14, then (11)(14)(mod 15) € H. (11)(14)(mod 15) = 154(mod 15) (iii) Find all equivalence classes of A

Hence [11 "= 14].

$$2 = 10 - 8$$

$$= 10 - (4 \times 2)$$

$$= 10 - ((24 - 20) \times 1)$$

$$= 10 - (24 \times 1) + (20 \times 2)$$

$$= 34a + 126b = (10 \times 1) - (24 \times 2) + (10 \times 4)$$

$$\Rightarrow 2) 4 = (10 \times 5) - (24 \times 1)$$

$$O_{x,srop} = ((3u - 2u) \times 5) - (2u \times 2)$$

$$= (3u \times 5) - (2u \times 5) - (2u \times 2)$$

$$= (34x5) - (126x4) + (34x3)x4$$

$$= (34x5) - (126x4) + (34x3)x4$$

$$=(34 \times 26) + (126 \times -7)$$

$$m = 2.$$

$$\alpha = 26.$$

Exam II: MTH 213, Spring 2018

Ayman Badawi

$$Score = \frac{3^2}{3^2}$$

Mariam Reda

QUESTION 1. (6 points)

Imagine: The following Algorithm segment. Find the exact number of additions, multiplications, and subtractions that will be performed when the algorithm is executed. Then find the complexity of the Algorithm segment.

of. Assume n. is odd.

Outer 100p

Olterates from
$$k=1$$
 to $\lfloor \frac{n}{2} \rfloor$

If n is odd $\lfloor \frac{n}{2} \rfloor = \frac{n-1}{2}$

executed:

Odd:
$$\frac{n-1}{2} - 1 + 1 = \frac{n-1}{2}$$

. Number of operations per single iteration of outer 100p= =

o Total number of operations in outer 100p: = G(2) - 3n [Grad].

$$=6(\frac{n-1}{2})=|3n-3|$$

m = 7; s = 3

For
$$k := 1$$
 to $\lfloor \frac{n}{2} \rfloor$

$$L = k * m + s^{2} + 2 * s - 2$$
For $i := 1$ to $(k + 2)$

$$W = s^4 + 3 * k + \eta r^3 + i - 8$$

nextinext k

Inner 100p olterates from i= 1 to (k+2).

. Namper of obsighans per single iteration of inner 100p = 10

operations
operations
operations
of inner loop for each outer 100p | k=1 k=2 k=3 k= 12 10x3, 10x4, 10x5, ..., 10x(n-1+2

$$=\frac{\binom{n-1}{2}(5n+45)}{2}$$

.: Total operations for algorithm = $\begin{bmatrix} 5n^2 + 40n - 45 \\ + 3n - 3 \end{bmatrix}$ = $\begin{bmatrix} 5n \end{bmatrix} \rightarrow$: Complexity = $O(S_n)$ = n^2

QUESTION 2. (2 points) _

(i)
$$O\left(\frac{x^{0.9} + 3x^{1.2} - 5}{x + 7}\right)$$
 equals to $O\left(x^{0.9} + 3x^{1.2} - 5\right) = \frac{n^{1.2}}{n!} = 9n^{1.2-1} = 10^{1.2-1}$

$$0(x^{3}+3x^{1/2}-1)$$

$$=\frac{n^{1/2}}{n^{1/2}}=90^{1/2-1}$$

(ii)
$$O(\sqrt[5]{x} + x^2 + 1)(x^2 - x^{7/2} - 2)$$
 equals to $O(\sqrt[5]{x} + x^2 + 1) \circ O(x^2 - x^{4/2} - 2) = n^2 \cdot n^{3/2} = x^{2+3/2} = x^{11/2}$.

QUESTION 3. (6 points) Imagine we have a sequence $\{a_n\}_{n=0}^{\infty}$, where $\underline{a_0=4}$, $\underline{a_1=2}$, and $a_n=4a_{n-1}-4a_{n-2}+3n+1$. Find a general formula for a_n . Then find a_6 .

=> There exists some or s.t.

$$\alpha^{n} = 4\alpha^{n-1} - 4\alpha^{n-2}$$

$$U \leftarrow \alpha^{n-2}$$

$$\alpha^2 = 4\alpha - 4$$

$$\alpha^2 - 4\alpha + 4 = 0$$

$$(\alpha-2)(\alpha-2)=0$$

$$\alpha = 1$$
 (repeated root).

an = 40 , - 40 , - 2 + 3n + 1 . | => an can be written as

$$a_n = 4c_1(2)^n - 4c_2 n(2)^n + 3n + 1$$
.

Let
$$n = 0$$
:
 $a_0 = 4$
 $= 4c_1(2) - 4c_2(0)(2) + 3(0) + 1$

$$\begin{array}{c} 4 = 4c_1 + 1 \\ 0 \text{ let } n = 1 \\ 0 = 2 \\ = 4c_1(2) + 4c_2(1)(2) + 3(1) + 1 \end{array}$$

From ① : $\frac{4-1}{4} = C_1$. $C_1 = \frac{3}{4}$ From ② : $2 = 8(\frac{3}{4}) - 8C_2 + 4$ $\frac{-8}{-8} = C_2$. $C_2 = 1$

$$42 - 10 = -8c_2$$
 $\frac{-8}{-8} = c_2$
 $\frac{-8}{-8} = c_2$

. General formula $Q_n = 4(\frac{3}{4})(2)^n - 4(1)n(2)^n + 3n + 1$ $Q_n = 3(2)^n - 4n(2)^n + 3n + 1$

QUESTION 6. (i) Let $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ and $B = \{0, 3, 6\}$. Define "=" on A so that $a = b \text{ if } (a - b) \mod(9) \in B$

0 = 6 b=3 C= 0 b. (3 points)Find all equivalence classes of A. 4 12 12

just tell me the cardinality of "=".

0-b = 6-3 = 3 mod 9 = 3 & B b-c = 3-0 = 3 mod 9 = 3 & B a-c= 6-0=6 med 9=6 EB => TRUE, similarly with 4=1, b=4, C=7 and a=2, b=5, c=8

c. (1 points) If we view " = " as a subset of $A \times A$, how many elements does "=" have? Do not list the elements,

(ii) Let $A = \{-16, 1, 3, 10, 12, 15\}$ and $B = \{0, -3, -5, -9, -11, -12, -14, -19, -28, -31\}$. Let $a, b \in A$. Define " \leq " on A so that $a \leq b$ if $(b - a) \in B$. Then " \leq " is a partial relation on A (DO NOT SHOW THAT)

a. (4 points) Draw the Hassee diagram of such relation

b. (5 points) By staring at the Hassee diagram, If possible, find

i. 12∧10 15_ ✓

ii. 10∧3 _____15

v. 1 ^ -16 12

vi. 1 \lor 15 1 vii. 10 \lor 3 13

viii. 10-∧-16 15

ix. Is there a $c \in A$ such that $a \le c$ for every $a \in A$? If yes, find c

x. Is there an $m \in A$ such that $m \le a$ for every $a \in A$? If yes, find m

am.

Exam II: MTH 213, Spring 2018

Ayman Badawi

Ayman

(Bonus), (1 point). This is math 213 and my instructor name is Badawi . His office hours are on 4h oh, from . We meet every, Sunday, Tuesday, and Thursday in Nab

71143

QUESTION 1. Imagine: then

(i)
$$O(\frac{x^{0.7} + 3x^{0.2} - 5}{x + 7})$$
 equals to $= \frac{O(x^{0.7} + 3x^{0.2} - 5)}{O(x + 7)} = \frac{\lambda^{0.7}}{\lambda}$

$$O(\sqrt[3]{x} + x)(x^2 - x^{7/2} - 2)_{\text{equals to}} = O(x^{1/3} + x) \cdot O(x^2 x^{3 \cdot 5} - 2)$$

$$= x \cdot x_{0}^{3 \cdot 5} = x_{0}^{4 \cdot 5}$$

QUESTION 2. Imagine: The following Algorithm segment. Find the exact number of additions, multiplications, and subtractions that will be performed when the algorithm is executed. Then find the complexity of the Algorithm segment.

No of outer loop iterations
$$n$$
 $L = n^2 + 2 - 3 + 1 = n^2$.

at $L = 1.(k = 3)$
Outer loop op: 4

inner loop op = $(6)(k+1-1+1)$
 $= (6)(4) = 24$
 $total op = 4 + 24 = 28$.

at $L = n^2$ $(k-n^2+2)$
outer loop op = $(6)(k+1)$
 $= (6)(n^2+2+1)$
 $= (6)(n^2+2+1)$
 $= (6)(n^2+3)$
 $= 6n^2+18$.

Total op: $4 + 6n^2 + 18$
 $= 6n^2 + 22$.

 $m = 7; s = 9$

For $k := 3 \text{ to } (n^2+2)$
 $L = k * m + 2 * s - 6 \text{ 4 op}$.

For $i := 1 \text{ to } (k+1)$
 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^3 + i - k^2 - 6 \text{ op}$.

 $s = s + m^$

QUESTION 3. 1) Imagine: there are 220 flowers in a shop and each flower is either red or green or yellow (nothing else). You heard someone saying: There are at least 10 flowers that have the same color. You smiled and you told yourself : Definitely this person never took Math 213 or this person in the shop must be Ayman Badawi, since his arithmetic is very week. So can you make a better statement that is always true and no one can improve it? i.e., your statement: There

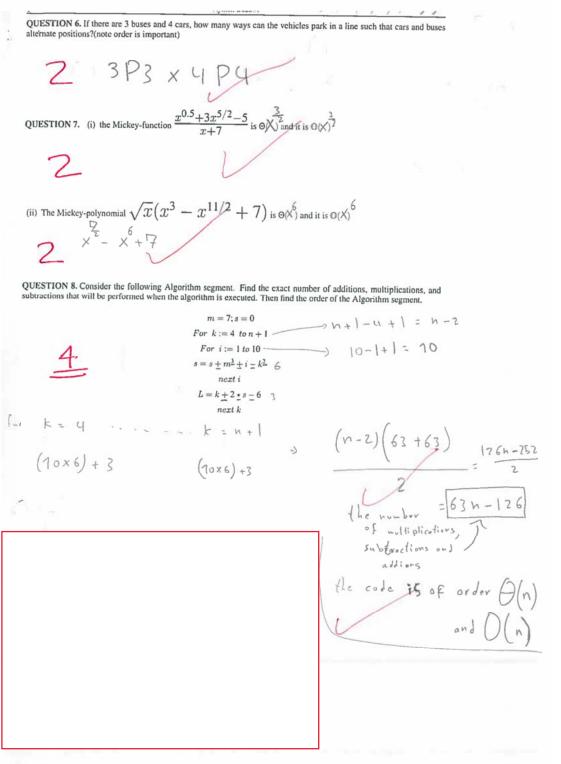
are at least so and so...that have the same color. Result: There are at least 74 flowers Ans: | Doman | = 220. 220 = 74 m = of the same color. (co-domain 1 = 3

2) Imagine: You travelled faster than the light and you discovered that only 727 persons were born between 2026- $\frac{1}{202031}$. Then there is a year where at most m persons were born in that year. Find the minimum value of m.

 $m = \lfloor \frac{727}{6} \rfloor = 121.$ Ansy: | Domain | = 727. 1 Codomain = 6

4) Use your own ENGLISH LANGUAGE: Explain to me the meaning of the answer in part (2).

Ans: By treating the number of people born as the domain, and number of birth years as co-domain, the answer in part (2) suggests that in a every possible scenario of this function, there will be a year (betw. 2026 and 2031), where no more than 121 people were born. This number best is the Conclusion as opposed to any numbers greater than it.


Exam II: Discrete Math, MTH 213, Fall 2017

Ayman Badawi

M. Said (Perfect score, second time in a row)

The state of the s
QUESTION 1. Assume there are 550 persons in the main building of AUS. Then
(i) There are at least n persons who were born in the same month and on the same day of the week. What is the maximum value of n that we all are sure about?
1 it's an onto function where IRICIDI and we
(ii) There must exist a day of the week such that no more than m persons were born on that day, what is the maximum we over some of
that began been
QUESTION 2. (i) 26 distinct numbers were chosen randomly. Then there are at least n numbers out of the chosen.
week the we can have m=550 Persons who were born
QUESTION 2. (i) 26 distinct numbers were chosen randomly. Then there are at least n numbers out of the chosen numbers that have the same unit digit. What is the maximum value of n that we all are sure about?
(ii) Assume 302 persons were in a party. Assume that the party started at 8pm and it ended at 2am. Then there are at least n persons in the party of the same sex. Find the maximum value of n that we all are sure about? (Hint: Smile!)
fave shaving) by pigeon hole principle we have at leas
(ii) Assume 302 persons were in a party. Assume that the party started at 8pm and it ended at 2am. Then there are at least n persons in the party of the same sex. Find the maximum value of n that we all are sure about? (Hint: Smile!)
QUESTION 3. We have 7 holes labeled from 1 to 7 and we have 4 balls (red, blue, green, yellow). We need to put each Persons of the same QUESTION 3. We have 7 holes labeled from 1 to 7 and we have 4 balls (red, blue, green, yellow). We need to put each Persons of the
QUESTION 3. We have 7 holes labeled from 1 to 7 and we have 4 balls (red, blue, green, yellow). We need to put each,
TO C
27C9X9P4
QUESTION 4. An electrical panel has six switches. How many ways can the switches be positioned up or down if four switches must be up and 2 switches must be down. (note order not important)
2 6C4x2C2
QUESTION 5. How many 4-digit even numbers greater than 400 can be formed using the digits 1, 2, 3, 4, 5, and 6?

$X = x_1 \times x_2 \times x_3 \times x_4$
1 = X=6C x 6C x 6C x 3C = 648

